Fixation of distal tibia fracture through plating, nailing, and nailing with Poller screws: A comparative biomechanical-based experimental and numerical investigation

Proc Inst Mech Eng H. 2020 Oct;234(10):1129-1138. doi: 10.1177/0954411920941664. Epub 2020 Jul 10.

Abstract

The goal of this study was to investigate two commonly used methods of fixation of distal metaphyseal tibia fractures, plating and nailing as well as the less frequently employed nailing with Poller screws, from a biomechanical perspective. Despite numerous studies, the best method to repair fractures of tibia the remains up for of debate. This study includes an in vitro experimental phase on human cadaveric tibias followed by a finite element analysis. In the experimental phase, under partial weight-bearing axial loading, the axial stiffness of the bone-implant construct and interfragmentary movements for each of the fixation methods, bone-plate, bone-nail, and bone-nail-Poller screw, were measured and compared with each other. Shear interfragmentary movement and stress distribution in the bone-implant construct for the three mentioned fixation methods were also determined from FE models and compared with each other. Results of in vitro experiments, i.e., the exertion of axial loading on the tibia-plate, tibia-nail, and tibia-nail-Poller screw, showed that utilization of tibia-nail and tibia-nail-Poller screw led to a stiffer bone-implant construct, and consequently, lower interfragmentary movement, compared to the tibia-plate construct (p values for tibia-nail and tibia-nail-Poller screw, and for both axial stiffness and interfragmentary movement, compared to those of tibia-plate construct, were less than 0.05). Numerical analyses showed that nailing produced less undesirable shear interfragmentary movement, compared to the plating, and application of a Poller screw decreased the shear movements, compared to tibia-nail. Furthermore, using the finite element analysis, maximum von Mises stress of adding a screw in tibia-nail, tibia-plate, and tibia-nail-Poller screw, was found to be: 51.5, 78.6, and 60.5 MPa, respectively. The results of this study suggested that from a biomechanical standpoint, nailing both with and without a Poller screw is superior to plating for the treatment of distal tibia fractures.

Keywords: Fracture fixation; bone-implant construct stiffness; distal tibia; finite element analysis; human cadavers; interfragmentary movement; intramedullary nail; locking plate.

MeSH terms

  • Biomechanical Phenomena
  • Bone Plates
  • Bone Screws
  • Fracture Fixation, Intramedullary*
  • Humans
  • Tibia / surgery
  • Tibial Fractures* / surgery